Sensitive Voltammetric Determination of Mitoxantrone by Using CS-Dispersed Graphene Modified Glassy Carbon Electrodes

نویسندگان

  • Bin Hong
  • Qiong Cheng
چکیده

A novel CS-dispersed graphene modified glassy carbon electrode was fabricated. Study electrochemical characteristics of mitoxantrone in the CS-dispersed graphene modified electrode by cyclic voltammetry and other methods, by selecting and optimizing the various parameters to create a new electrochemical method for the determination of mitoxantrone. The linear range of the oxidation peak current is from 6 × 10 to 1 × 10 mol/l in this method, after 2.5 mins open-circuit accumulation, the limit of detection is 2 × 10 mol/l. After 10 parallel determinations, the relative standard deviation was 3.7% that the concentration of mitoxantrone was 1 × 10 mol/l. The modified electrode has been successfully applied for the assay of mitoxantrone in human urine samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

A graphene nanosheets (GNS) film coated glassy carbon electrode (GCE) was fabricated for sensitive determination of tyrosine (Tyr). The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalyt...

متن کامل

Sensitive Voltammetric Determination of Acetaminophen at Poly(4-vinyl pyridine)/Graphene Composite Modified Electrode

This study demonstrates the use of a selective and sensitive voltammetric sensor for determination of acetaminophen (AC). This was  performed by modifying a glassy carbon electrode with composite film of poly(4-vinylpyridine) and graphene sheet (P4VP/GR-GCE). The redox peak currents of AC increased significantly at P4VP/GR-GCE. The result was achieved by the synergistic effect of combined elect...

متن کامل

Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...

متن کامل

Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...

متن کامل

Study the voltammetric behavior of 10-Hydroxycamptothecin and its sensitive determination at electrochemically reduced graphene oxide modified glassy carbon electrode

10-Hydroxycamptothecin; Electrochemically reduced graphene oxide; Determination; Electrochemical properties Abstract The electrochemical properties of 10-Hydroxycamptothecin were investigated systematically at a reduced graphene oxide modified glassy carbon electrode. A new pair of redox peaks of 10-Hydroxycamptothecin was reported for the first time with quasi-reversible process driven by adso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013